Поиск в словарях
Искать во всех

Физический энциклопедический словарь - поглощение звука

 

Поглощение звука

поглощение звука
явление необратимого перехода энергии звуковой волны в др. виды энергии и, в частности, в теплоту. Характеризуется коэфф. поглощения а, к-рый определяется как обратная величина расстояния, на к-ром амплитуда звуковой волны уменьшается в е=2,718 раз. Коэфф.  выражается в см-1, т. е. в неперах на 1 см или же в децибелах на 1 м (1 дБ/м=1,1510-3 см-1). П. з. характеризуется также коэфф. потерь =/ (где  — длина волны звука) или добротностью Q=1/. Величина  —«логарифмич. декремент затухания.

При распространении звука в среде, обладающей вязкостью и теплопроводностью,

где  — плотность среды, с скорость звука в ней,  — круговая частота звуковой волны, т) и  — коэфф. сдвиговой и объёмной вязкости соответственно,  — коэфф. теплопроводности, Ср и Cv — теплоёмкости среды при пост. давлении и объёме. Если ни один из коэфф. , ,  не зависит от частоты, что часто выполняется на практике, то ~2. Величина /f2, где f=/2, явл. xap-кой в-ва, определяющей П. з. Она, как правило, в жидкостях меньше, чем в газах, а в тв. телах для продольных волн меньше, чем в жидкостях. Напр., в воздухе

при норм. давлении для частот от 100 до 400 кГц /f2=3,010-13 см-1с2, а в воде в диапазоне частот от 0,1 до 1000 кГц /f2=3,510-16 см-1с2.

Если при прохождении звука нарушается равновесное состояние среды, П. з. оказывается значительно большим, чем определяемое по ф-ле (1). Такое П. з. наз. релаксационным (см. Релаксация акустическая) и описывается ф-лой

где т — время релаксации, с0 и с— скорости звука при <<1 и при >1 соответственно. В этом случае П. з. сопровождается дисперсией звука.

В газах теплопроводность и сдвиговая вязкость дают в П. з. вклад одного порядка величины. П. з. зависит от давления в газе, поскольку частота релаксации с понижением давления падает. В жидкостях П. з. в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для П. з. существенны релаксац. процессы. Частота релаксации в жидкостях, т. е. величина р=1/, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких УЗ-вых и гиперзвуковых частот. Коэфф. П. з. обычно сильно зависит от темп-ры и от наличия примесей.

П. з. в тв. телах определяется в основном внутр. трением и теплопроводностью среды, а на высоких частотах и при низких темп-pax — разл. процессами вз-ствия звука с внутр. возбуждениями в тв. теле (фононами, электронами проводимости, спиновыми волнами и др.). Величина П. з. в тв. теле зависит от кристаллич. состояния в-ва (в монокристаллах П. з. обычно меньше, чем в поликристаллах), от наличия дефектов (примесей, дислокаций и др.), от предварит. обработки материала. В металлах, подвергнутых предварит. механич. обработке (ковке, прокатке и т. п.), П. з. часто зависит от амплитуды звука. Во многих тв. телах при не очень высоких частотах ~, поэтому величина добротности не зависит от частоты и может служить хар-кой потерь материала. Самое малое П. з. при комнатных темп-pax было обнаружено в нек-рых диэлектриках, напр. в топазе, берилле ~15 дБ/см при f=9 ГГц, железоиттриевом гранате ~25 дБ/см при той же частоте. В металлах и полупроводниках П. з. всегда больше, чем в диэлектриках, поскольку имеется дополнит. поглощение, связанное с вз-ствием звука с эл-нами проводимости. В полупроводниках это вз-ствие может приводить к «отрицат. поглощению», т. е. к усилению звука при условии, что скорость дрейфа носителей заряда превышает скорость распространения звуковой волны (подробнее см. Акустоэлектронное взаимодействие). С ростом темп-ры П. з., как правило, увеличивается. Наличие неоднородностей в

554



среде приводит к увеличению П. з. В разл. пористых и волокнистых в-вах П. з. велико, что позволяет применять их для глушения звука и звукоизоляции. С увеличением интенсивности звука проявляется нелинейное П. з., к-рое зависит от амплитуды волны и обусловлено тем, что происходит передача энергии в высшие сильно поглощающиеся компоненты спектра волны.

• Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М,, 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. А, т. 3, ч. Б, М., 1968; т. 4, ч. Б, М., 1970; т. 7, М., 1974; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972.

А. Л. Полякова.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):